High Performance Real - Time GestureRecognition Using Hidden Markov

نویسندگان

  • Gerhard Rigoll
  • Andreas Kosmala
  • Stefan Eickeler
چکیده

An advanced real-time system for gesture recognition is presented , which is able to recognize complex dynamic gestures, such as "hand waving", "spin", "pointing", and "head moving". The recognition is based on global motion features, extracted from each diierence image of the image sequence. The system uses Hidden Markov Models (HMMs) as statistical classiier. These HMMs are trained on a database of 24 isolated gestures, performed by 14 diierent people. With the use of global motion features, a recognition rate of 92.9% is achieved for a person and background independent recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using One-Shot Machine Learning to Implement Real-Time Multimodal Learning Analytics

Educational research has demonstrated the importance of embodiment in the design of student learning environments, connecting bodily actions to critical concepts. Gestural recognition algorithms have become important tools in leveraging this connection but are limited in their development, focusing primarily on traditional machine-learning paradigms. We describe our approach to real-time learni...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Abnormality Detection in a Landing Operation Using Hidden Markov Model

The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...

متن کامل

LAFTER: Lips and Face Real-Time Tracker

This paper describes an active-camera real-time system for tracking, shape description, and classification of the human face and mouth using only an SGI Indy computer. The system is based on use of 2-D blob features, which are spatially-compact clusters of pixels that are similar in terms of low-level image properties. Patterns of behavior (e.g., facial expressions and head movements) can be cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998